Fibra Otica

Matheus Henrique de Castilho - 20222521

Resumo

Este trabalho investiga o uso de grafos na
otimizagdo do cabeamento de fibras Opticas,
essencial para a transmissdo de dados. A
modelagem da infraestrutura permite aplicar
algoritmos como Kruskal, para minimizar
custos, e Dijkstra, para encontrar a rota mais
curta. Uma versdo modificada do Dijkstra
prioriza rotas mais seguras, reduzindo falhas
na rede. Além disso, no futuro, técnicas de
Inteligéncia Artificial poderdo aprimorar a
manutencdo e a otimizagdo dindmica da
infraestrutura.

Introducio

A infraestrutura de fibra optica € essencial
para a transmissdo rapida de dados, sendo sua
expansdo vital para assegurar uma
comunicacdo eficiente tanto em areas urbanas
quanto rurais. Contudo, um dos principais
desafios é determinar a melhor rota para o
cabeamento, com o objetivo de reduzir os
custos de implementagdo e garantir a
confiabilidade da rede.

Esse desafio pode ser representado por meio
de grafos, onde os nds representam os pontos
de conex@o e as arestas sdo as ligagdes entre as
fibras opticas. A utilizacdo dessa abordagem
permite aplicar algoritmos classicos da teoria
dos grafos para otimizar ndo apenas o custo de
instalacdo, mas também a seguranca e a
eficiéncia na transmissdo de dados.

Figura 1:
https://www.desktop.com.br/blog/internet-de-fi
bra-optica-o-caminho-ate-a-sua-casa/

Modelagem do Problema como um
Grafo

Para representar esse problema por meio
de grafos, podemos definir:

e Nés: Representam pontos de conexao,
como centrais de distribui¢do, bairros
ou edificios.

e Arestas: Representam os trechos de
fibra doptica que ligam os nos.

o Pesos: O peso das arestas pode ser
definido com base no custo de
instala¢do, na distadncia entre os pontos
ou na qualidade do sinal.

e Fator de Risco: Cada aresta também
pode ter um peso baseado na
probabilidade de falhas, como
rompimentos por caminhoes,
tempestades ou desgaste da fibra.

o Caracteristicas do Grafo:

o Grafo Conexo: Para garantir
que todos os pontos estejam
interligados.

o Grafo Ponderado: Pois cada
conexao possui um custo
associado.

o Grafo Possivelmente Ciclico:
Dependendo das redundancias
implementadas na rede.

o Grafo Dirigido ou Nio
Dirigido: Pode ser
considerado ndo dirigido, pois
0 cabeamento de fibra
geralmente funciona nos dois
sentidos.

Algoritmos Aplicados

Algoritmos classicos de grafos podem ser aplicados
para resolver esse problema:

e Algoritmo de Prim ou Kruskal: Usado
para encontrar a arvore geradora
minima, garantindo que todas as
conexdes sejam estabelecidas com o
menor custo possivel.

e Algoritmo de Dijkstra: Util para
encontrar 0 caminho mais curto entre
dois pontos especificos, auxiliando na
distribuicdo eficiente dos dados pela
rede.

e Caminho Mais Seguro: Uma
variagdo do Dijkstra que leva em conta
o fator de risco, priorizando rotas que
tenham menor probabilidade de falhas.

Minima

Arvore Geradora

(Kruskal)

Para assegurar que a rede de fibra dptica seja
montada com o custo mais baixo possivel,
podemos utilizar o Algoritmo de Kruskal para
determinar a Arvore Geradora Minima
(AGM). Esse algoritmo organiza as arestas
com base no custo e as adiciona
sequencialmente, garantindo que todas as
conexdes sejam feitas de maneira a minimizar
o custo total, sem a criagdo de ciclos.

e Grafo: Conexo, Ponderado, Naio
Dirigido.

e Objetivo: Minimizar o custo total da
rede de cabeamento de fibras.

Exemplo de uso: Ao aplicar o algoritmo de
Kruskal, podemos otimizar a distribuicdo de
cabos entre os pontos de conexdo, garantindo
que a infraestrutura de fibra seja estabelecida
com o menor custo, sem desperdicio de
recursos. Link GDB:
https://onlinegdb.com/2JsgrkfOy

Grafo:
__init_ (self, vertices):
Self.. = vertices
self. [1 #L

adicionar_aresta(self, u, v, custo):
self. . ((custo, u, v))

encontrar_subconjunto(self, pai, i):
pai[i] == i:

i
self. (pai, pai[il)

unir_subconjuntos(self, pai, rank, x, y):
raiz_x = self. (pai, x)
raiz_y = self. (pai, y)
rank[raiz_x] < rank[raiz_y]:
pailraiz_x] = raiz_y
rank[raiz_x] > rank[raiz_y]:
pailraiz_y] - raiz_x

paifraiz_y] - raiz_x
rank[raiz_x]
kruskal(self):
self. .sort() # Ordena pe
pai = []
rank = []
arvore_minina = []

nodo (self.):
pai. (nodo)
rank. (2)

num_arestas

Figura 2: Imagem criada pelo proprio autor.

i
num_arestas < self. 8
custo, u, v = self. [il
i

X = self. (pai, u)
y = self. (pai, v)
x I=y:
arvore_minima. ((u, v, custo))
b (pai, rank, X, y)
num_arestas

arvore_minima

Grafo(s)

(
(
(
(
€
¢

arvore_minima - g.
"Arvore Geradora Minima (menor custo):", arvore_minima)

Figura 3: Imagem criada pelo proprio autor.

Caminho Minimo (Dijkstra)

Outro desafio relevante é determinar a rota
mais curta entre dois pontos especificos na
rede de fibra optica. O Algoritmo de Dijkstra é
uma ferramenta eficaz para calcular o caminho

mais eficiente, levando em consideragdo o
custo ou a distancia entre os nos.

e Grafo: Conexo, Ponderado, Naio
Dirigido.

e Objetivo: Encontrar o caminho mais
curto entre dois pontos.

Exemplo de uso: Se quisermos otimizar a
transmissdo de dados entre dois pontos,
podemos usar o Dijkstra para identificar a rota
mais curta, garantindo que os dados percorrem
o caminho mais eficiente possivel, sem
sobrecarregar a rede. Link GDB:
https://onlinegdb.com/ x6GCy;jr0

Grafo:
__init_ (self):
self. o3

adicionar_aresta(self, u, v, custo):
u self. :
self.

self. 8
self. . ((v, custo))
self. . ((u, custo)) # Graf

dijkstra(self, inicio, destino):
fila_prioridade

heapq. (fila_priori
distancias = {nodo: (
distancias[inicio]

caminho = {}

fila_prioridade:
custo_atual, nodo_atual = heapq. (fila_prioridade)

nodo_atual == destino:

vizinho, peso in self. [nodo_atual]:
novo_custo - custo_atual + pi
novo_custo < distancias[vizinho]:
distancias[vizinho] = novo_cust:

0_
heapq. (fila_priorid:
caminho[vizinho] = nodo_atual

Figura 4: Imagem criada pelo proprio autor.

e Grafo: Conexo, Ponderado, Naio
Dirigido.

Exemplo de uso: Ao priorizar rotas com
menor risco de falha, conseguimos garantir
que a rede de fibra optica seja mais confiavel,
evitando interrupcdes devido a fatores
externos, como danos ao cabo ou condigdes
climaticas adversas. Link GDB:
https://onlinegdb.com/AaZ7UgmMC

rota
atual destino
atual in caminho:
rota. (atual)
atual = caminho[atual]
rota. inici
rota.

rota, distancias[destino]

4)
5
)
)
)

(inicio, destino)
rota de {inicio} para {destino}: {rota} com custo {custo}")

Figura 5: Imagem criada pelo proprio autor.

Caminho Mais Seguro (Dijkstra
Modificado)

Além de otimizar o custo ou a distancia, €
fundamental considerar a seguranca da rede,
priorizando rotas com menores riscos de
falhas. Fatores como danos aos cabos,
condi¢des climaticas adversas e trafego
intenso de veiculos podem afetar as conexodes
de fibra. Esses riscos podem ser representados
no grafo como pesos adicionais nas arestas.

Ao ajustar o algoritmo de Dijkstra para incluir
esses riscos nas conexdes, CcoONseguimos
identificar o caminho mais seguro, reduzindo

as probabilidades de falhas na transmissdo de
dados.

e Objetivo: Minimizar o risco de falhas
nas conexoes de fibra optica.

eapq

Grafo:
__init_ (self):
Self. e

adicionar_aresta(self, u, v, custo, risco):
u self. H
self. [ul = 1
v self. H
self. v =101
self. [u]. ((v, custo, risco))
self. ovi. ((u, custo, risco)) # Grafo ndo-dire

caminho_mais_seguro(self, inicio, destino):
fila_prioridade = []
heapq. (fila_prioridade, (¢, inicio)) #

risco_acumulado = {nodo: ("inf") for nodo in self.
risco_acumulado[inicio]
caminho = {}

ila_prioridade:
risco_atual, nodo_atual - heapq. (fila_prioridade)

nodo_atual == destino:

_, risco in self. [nodo_atual]:
co = risco_atual + risco

ri
risco_acumulado[vizinho]

heapq. (fila_prioridade,
caminho[vizinho] - nodo_atual

Figura 6: Imagem criada pelo proprio autor.

Figura 7: Imagem criada pelo proprio autor.

Conclusao

A representagdo de redes de fibra Optica por
meio de grafos permite uma gestdo mais
eficiente da infraestrutura de comunicagdo,
reduzindo custos e melhorando a performance
na transmissdo de dados. A aplicagdo de
algoritmos como Prim, Kruskal e Dijkstra
facilita o planejamento da distribui¢do dos
cabos, evitando desperdicios e garantindo
conexOes mais robustas. Além disso, ao incluir
0 risco nas rotas, ¢ possivel aumentar a
seguranca ¢ a confiabilidade da rede. No
futuro, desafios como a manutencao preditiva

e a otimizacdo dindmica da rede poderdo ser
abordados por meio de técnicas de Inteligéncia
Artificial e aprendizado de maquina.

Referéncias

CORMEN, T. H.; LEISERSON, C. E;
RIVEST, R. L.; STEIN, C. Algoritmos: Teoria
e Pratica. 3. ed. Rio de Janeiro: Elsevier,
2012.

SEDGEWICK, R.; WAYNE, K. Algorithms. 4.
ed. Addison-Wesley, 2011.

NETWORK optimization and graph theory.
Disponivel em:

https://www.sciencedirect.com. Acesso em: 30
mar. 2025.

INTRODUCTION to graph algorithms for
network routing. Disponivel em:
https://www.geeksforgeeks.org. Acesso em: 30
mar. 2025.

OTIMIZACAO de redes de fibra optica com
algoritmos de grafos. Disponivel em:
https://ieeexplore.ieee.org. Acesso em: 30 mar.
2025.

https://www.sciencedirect.com
https://www.sciencedirect.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://ieeexplore.ieee.org
https://ieeexplore.ieee.org

	Fibra Ótica
	
	Resumo
	Introdução
	Modelagem do Problema como um Grafo
	Algoritmos Aplicados
	Árvore Geradora Mínima (Kruskal)
	Caminho Mínimo (Dijkstra)
	Caminho Mais Seguro (Dijkstra Modificado)
	Conclusão
	Referências

